A group bridge approach for variable selection
نویسندگان
چکیده
منابع مشابه
A group bridge approach for variable selection.
In multiple regression problems when covariates can be naturally grouped, it is important to carry out feature selection at the group and within-group individual variable levels simultaneously. The existing methods, including the lasso and group lasso, are designed for either variable selection or group selection, but not for both. We propose a group bridge approach that is capable of simultane...
متن کاملA new approach for sustainable supplier selection
Recently, sustainable supply chain management (SSCM) has become one of the important subjects in the industry and academia. Supplier selection, as a strategic decision, plays a significant role in SSCM. Researchers use different multi-criteria decision making (MCDM) methods to evaluate and select sustainable suppliers. In the previous studies, evaluation is solely based on the desirable feature...
متن کاملA hybrid intuitionistic fuzzy multi-criteria group decision making approach for supplier selection
Due to the increasing competition of globalization, selection of the most appropriate supplier is one of the key factors for asupply chain management’s success. Due to conflicting evaluations and insufficient information about the criteria, Intuitionisticfuzzy sets (IFSs) considered as animpressive tool and utilized to specify the relative importance of the criteria. The aim of this paper is to...
متن کاملGene selection: a Bayesian variable selection approach
UNLABELLED Selection of significant genes via expression patterns is an important problem in microarray experiments. Owing to small sample size and the large number of variables (genes), the selection process can be unstable. This paper proposes a hierarchical Bayesian model for gene (variable) selection. We employ latent variables to specialize the model to a regression setting and uses a Baye...
متن کاملWhich bridge estimator is optimal for variable selection?
We study the problem of variable selection for linear models under the high-dimensional asymptotic setting, where the number of observations n grows at the same rate as the number of predictors p. We consider two-stage variable selection techniques (TVS) in which the first stage uses bridge estimators to obtain an estimate of the regression coefficients, and the second stage simply thresholds t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2009
ISSN: 1464-3510,0006-3444
DOI: 10.1093/biomet/asp020